Generalized Linear Mixed Model for Multivariate Multilevel Binomial Data
نویسندگان
چکیده
منابع مشابه
Multilevel mixed linear model analysis using iterative generalized least squares
In the social and other sciences, data are often structured hierarchically. Thus, for example, workers are grouped into workplaces, individuals into households, animals into litters, and subjects can be studied repeatedly, so giving rise to measurements grouped within individuals. It has long been recognized that the existence of such 'clustering' presents particular problems of model specifica...
متن کاملA linear mixed-effects model for multivariate censored data.
We apply a linear mixed-effects model to multivariate failure time data. Computation of the regression parameters involves the Buckley-James method in an iterated Monte Carlo expectation-maximization algorithm, wherein the Monte Carlo E-step is implemented using the Metropolis-Hastings algorithm. From simulation studies, this approach compares favorably with the marginal independence approach, ...
متن کاملGeneralized Linear Mixed Models for Nominal Data
Nominal variables include unordered polytomous variables and permutations. An unordered polytomous response is one among a set of categories whereas a permutation is an ordering of categories. The categories are nominal in the sense that they do not possess an inherent ordering shared by all units as is assumed for ordinal variables. Using decision terminology, we will refer to the categories a...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملMultilevel Latent Gaussian Process Model for Mixed Discrete and Continuous Multivariate Response Data
We propose a Bayesian model for mixed ordinal and continuous multivariate data to evaluate a latent spatial Gaussian process. Our proposed model can be used in many contexts where mixed continuous and discrete multivariate responses are observed in an effort to quantify an unobservable continuous measurement. In our example, the latent, or unobservable measurement is wetland condition. While pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Korean Journal of Applied Statistics
سال: 2008
ISSN: 1225-066X
DOI: 10.5351/kjas.2008.21.6.923